

Savitribai Phule Pune University Board of Studies - Automobile and Mechanical Engineering Undergraduate Program - Mechanical Engineering (Sandwich) [2019 pattern]

Course Code	Course Name	Teaching Scheme (Hours/ Week) HL LD SI Examination Scheme and Marks HL LD SI SI SI SI SI SI SI SI SI SI SI SI SI S				Cre	edit							
			Π	JT	IS	ES	ΤW	Γ	0	TOTAL	HT	PI	TU	TOT
	Semester-III													
	Solid Mechanics	4	2	-	30	70	-	50	-	150		1	-	5
-	Solid Modeling and Drafting	3	2	-	30	70	-	50	-	150		1	-	4
	Engineering Thermodynamics	3	2	-	30	70	-	-	25	125		1	-	4
	Engineering Materials and Metallurgy	3	2	-	30	70	25	-	-	125		1	-	4
	Electrical and Electronics Engineering	3	2	-	30	70	25	-	-	125	3	1	-	4
	Geometric Dimensioning and Tolerancing Lab	-	2	-	-	-	25	-	-	25	-	Ι	-	1
202046	Audit Course - III	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	16	12	-	150	350	75	100	25	700	16	6	-	22
207002	Semester-		1	1	20	70	25			105	2		1	4
	Engineering Mathematics - III	3	-	1	30	70	25	-	-	125		-	1	4
	Kinematics of Machinery	3	2	-	30	70	-	-	25	125		1	-	4
	Thermal Engineering	3	2	-	30	70	-	-	25		3	1	-	4
	Fluid Mechanics and Machinery	3	2	-	30	70	-	-	25	-	3	1	-	4
	Manufacturing Engineering	3	-	-	30	70	-	-	-		3	-	-	3
	Machine Shop	-	2	-	-	-	50	-	-	50	-	1	-	1
	Project Based Learning - II	-	4	-	-	-	50	-	-	50	-	2		2
202053	Audit Course - IV	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	15	12	1	150	350	125	-	75	700	15	6	1	22

Abbreviations: TH: Theory, **PR**: Practical, **TUT**: Tutorial, **ISE**: In-Semester Exam, **ESE**: End-Semester Exam, **TW**: Term Work, OR: Oral

Note: Interested students of SE (Mechanical Engineering-Sandwich) can opt for any one of the audit course from the list of audit courses prescribed by BOS (Automobile and Mechanical Engineering)

Instructions

- Practical/Tutorial must be conducted in three batches per division only.
- Minimum number of required Experiments/Assignments in PR/ Tutorial shall be carried out as mentioned in the syllabi of respective subjects.
- Assessment of tutorial work has to be carried out as a term-work examination. Term-work Examination at second year of engineering course shall be internal continuous assessment only.
- Project based learning (PBL) requires continuous mentoring by faculty throughout the semester for successful completion of the tasks selected by the students per batch. While assigning the teaching workload of 2 Hrs/week/batch needs to be considered for the faculty involved. The Batch needs to be divided into sub-groups of 5 to 6 students. Assignments / activities / models/ projects etc. under project based learning is carried throughout semester and Credit for PBL has to be awarded on the basis of internal continuous assessment and evaluation at the end of semester.
- Audit course is mandatory but non-credit course. Examination has to be conducted at the end of Semesters for award of grade at institute level. Grade awarded for audit course shall not be calculated for grade point & CGPA.

	202041 - Solid Mechanics	
Teaching Scheme	Credits	Examination Scheme
Theory : 04 Hr./Week Practical : 02 Hr./Week	05 Theory : 04 Practical : 01	In-Semester : 30 Marks End-Semester : 70 Marks Practical : 50 Marks
Prerequisite Courses Engineering Mathematics- I and I	I, Systems in Mechanical Enginee	ering, Engineering Mechanics
 To draw Shear Force and Ben To determine Bending, Shear To solve problems of Torsion To apply the concept of Princ 	of stress, strain due to various types ding Moment Diagram for transver stress, Slope and Deflection on Be al shear stress for shaft and Bucklin ipal Stresses and Theories of Failur id Mechanics on application based	rse loading. am. ng for the column. re.
members. CO2.DRAW Shear force and be support. CO3.COMPUTE the slope & de CO4.CALCULATE torsional sl CO5.APPLY the concept of pri element.	f stresses and strain developed of ending moment diagram for variou eflection, bending stresses and shea near stress in shaft and buckling on ncipal stresses and theories of failu f SFD & BMD, torsion and princ	as types of transverse loading and ar stresses on a beam. a the column. are to determine stresses on a 2-D
	Course Contents	
Unit I	Simple stresses & strains	[10 Hr.]
various types of stresses with ap Modulus of Rigidity, Bulk Mo for ductile and brittle materia	uction to types of loads (Static, D plications, Hooke's law, Poisson dulus. Interrelation between elastic ls, factor of safety, Stresses a us and composite bars under com posite members	's ratio, Modulus of Elasticity, c constants, Stress-strain diagram and strains in determinate and
Unit II Shear	r Force & Bending Moment Diag	grams [08 Hr.]
beam due to concentrated load, combined loading, Relationship l	FD, BMD with application, SFD & uniformly distributed load, uniformly distributed load, uniformate between rate of loading, shear force nding moment, point of contra-flex	ormly varying load, couple and ce and bending moment, Concept
Unit III Str	esses, Slope & Deflection on Bea	ms [12 Hr.]
Simple bending, assumptions in common cross section (Circular, along the same cross-section Shear Stress on a Beam : Introd stress distribution diagram along Slope & Deflection on a Beam	roduction to bending stress on a b pure bending, derivation of flexur Hollow circular, Rectangular, I & uction to transverse shear stress o the Circular, Hollow circular, Rect a: Introduction to slope & deflect urvature, Macaulay's Method, Slop	al formula, Moment of inertia of & T), Bending stress distribution on a beam with application, shear angular, I & T cross-section ion on a beam with application,

Unit IV	Torsion, Buckling [08 Hr.]
ormulae and assurt and assurt ansmission on street	ar shafts : Introduction to torsion on a shaft with application, Basic torsion imption in torsion theory, Torsion in stepped and composite shafts, Torque ength and rigidity basis, Torsional Resilience
application Buckling of colum	Walled Tubes : Introduction of Torsion on Thin-Walled Tubes Shaft and its nns : Introduction to buckling of column with its application, Different column cal, safe load determination by Euler's theory. Limitations of Euler's Theory
Unit V	Principal Stresses, Theories of Failure [08 Hr.]
Stress, Principal S combined Normal a Theories of Elastic stress theory, Max	: Introduction to principal stresses with application, Transformation of Plane stresses and planes (Analytical method and Mohr's Circle), Stresses due to and Shear stresses failure : Introduction to theories of failure with application, Maximum principal mum shear stress theory, Maximum distortion energy theory, Maximum principal mum strain energy theory
U nit VI	Application based combined loading & stresses[08 Hr.](Based on load and stress condition studied in Unit I to Unit V)
condition of Equili- stresses at any cross following cases: Co stress), Combined p	Combined Loading and various stresses with application, Free Body Diagram and brium for determining internal reaction forces, couples for 2-D system, Combined as-section or at any particular point for Industrial and Real life example for the bombined problem of Normal type of Stresses (Tensile, Compressive and Bending problem of Shear type of stresses (Direct and Torsional Shear stresses), Combined and Shear type of Stresses
	Books & Other Resources
Text Books	
 S. Ramamurtha S.S. Rattan, "St B.K. Sarkar, "S Singer and Pyte 	Strength of Materials", Laxmi Publication m, "Strength of material", Dhanpat Rai Publication rength of Material", Tata McGraw Hill Publication Co. Ltd. trength of Material", McGraw Hill New Delhi l, "Strength of materials", Harper and row Publication "Mechanics of Materials", Prentice Hall Publication

6. Prof. S.K. Bhattacharyya, ITI Kharagpur, NPTEL web course material https://drive.google.com/file/d/1N2Eyv9ofPimIT2OSMZeMrSxe68Ulclei/view?usp=sharing

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Term Work

The Termwork shall consist of completion of Practicals, Self-learning Study Assignments and Presentations. Practical examination shall be based on the Termwork undertaken during the semester.

Practical (Any 6 experiments out of experiment no 1 to 8 from the following list whereas experiment no. 9 and 10 are mandatory. Minimum One experiment must be performed on IoT platform- Virtual Lab):

- 1. Tension test for Ductile material using extensometer on Universal Testing Machine.
- 2. Compression test for Brittle material on Universal Testing Machine.
- 3. Shear test of ductile material on Universal Testing Machine.
- 4. Tension test of Plastic/Composite material on low load capacity Tensile Testing Machine.
- 5. Measurement of stresses and strains using strain gauges.

- 6. Experimental verification of flexural formula in bending for cantilever, Simple supported beam.
- 7. Study and interpretations of stress distribution pattern using Polariscope for Plastic/Acrylic.
- 8. Experimental verification of torsion formula for circular bar.
- 9. Verification of results of any two from experiments no 1-8 using any FEA software tools.
- 10. **Self-learning study practical**: Following topics are distributed among the group of 3-5 Students and groups need to present and also submit the slides/poster on TW file.
 - a. Experimental stress analysis, Strain Gauges rosette with case study.
 - b. Residual stresses and Fatigue life with case study.
 - c. Effect of heat treatment on the mechanical properties of a metal with case study.
 - d. Mechanical properties of materials, Stresses and Design of components with case study.
 - e. Failure Mode Analysis and Stresses with case study.

20	2042 - Solid Modeling and Drafti	202042 - Solid Modeling and Drafting					
Teaching Scheme	Credits	Examination Scheme					
Theory : 03 Hr./Week	04	In-Semester : 30 M					
Practical : 02 Hr./Week	Theory : 03 Practical : 01	End-Semester : 70 M Practical : 50 M					
Prerequisite Courses			arks				
	ng, Engineering Graphics, Enginee	ring Mathematics - I and II					
 engineering parts 2. To introduce the curves and st 3. To apply basic concepts of 3 and assemblies 4. To apply geometrical transformed for the second stand data exchange 6. To create engineering drawing Course Outcomes On completion of the course, lear	standards and translators for variou gs, design documentation and use in	metric modeling e mass properties of compo us applications n manufacturing activities	nents				
geometry. CO3.CONSTRUCT solid mo mass property analysis, CO4.APPLY geometric transf CO5.USE CAD model data	curves and surfacing features and odels, assemblies using various mo including creating and using a coor formations to simple 2D geometries for various CAD based engineer FEA, CFD, MBD, CAE, CAM, etc. bach for communication.	deling techniques & PERF dinate system. s.	ORM				
	Course Contents						
Unit I	Fundamentals of 3D Modeling	80]	8 Hr.]				
Software Modules - Operating programming module, communic applications 3D Modeling approach - Primi	, CAD tools in the design process of System (OS) module, Geometric ation module, Computer Aided De tive, Features and Sketching, Ty	ic module, application mo sign - Features, requirement pes of Geometric models	odule, and $- 2^{1/2}$				
modeling, Modeling strategies	osite, 3D objects, difference betw	een wireframe, surface &	solid				
Model viewing: VRML web-base							
Unit II	Curves & Surfaces	_	8 Hr.]				
space, Analytical and Synthetic c	nt, Line and Circle, Curve represen urves, Parametric equation of line, it Cubic Spline, Bezier, B-Spline (circle, ellipse, Continuity (O	C^{0}, C^{1}				
Surfaces : Surface representation patch surface, Surface Modeling	n, Types of Surfaces, Bezier, B-	Spline, NURBS Surface, C	Coons				
	ion, Point Cloud Data (PCD), PC	- •	ies in				
Unit III	Solid Modeling	[08	Hr.]				
	-						

Sweep representation, Analytical solid modeling, Parametric solid modeling, feature based modeling, etc., Euler Equation (Validity of 3D solids), Mass Property Calculations

Introduction to Assembly Modeling, Assemblies (Top-down and Bottom-up approach), Design for Manufacturing [DFM], Design for Easy Assembly & Disassembly [DFA], Design for Safety

Unit IV

Geometric Transformation

[08 Hr.]

Introduction, Geometric Transformations, Translation, Scaling, Rotation, Reflection/Mirror, Shear, Homogeneous Transformation, Inverse Transformation, Concatenated Transformation (limited to 2D objects with maximum 3 points only), Coordinate systems - Model (MCS), Working (WCS), Screen (SCS) coordinate system, Mapping of coordinate systems

Projections of geometric models - Orthographic and Perspective projections, Design and Engineering applications

Unit V

CAD Data Exchange

[08 Hr.]

Introduction, CAD Kernels, CAD Data File, Data interoperability, CAD Data Conversions, challenges in CAD data conversions/remedies, Direct Data Translators, Neutral 3D CAD file formats (DXF, IGES, PDES, STEP, ACIS, Parasolid, STL, etc.), Data Quality

Requirements of CAD file format for 3D Printing (Additive Manufacturing), CAE, FEA, CFD, CAM (Subtractive Manufacturing), Multi-Body Dynamics (Motion Simulations), Computer Aided Inspection (CAI), Computer Aided Technologies (CAx), AR/VR applications, etc., Introduction to CAD Geometry Clean-up for different applications

Unit VI

CAD Customization & Automation

[08 Hr.]

Introduction, Limitations of 2D drawings, Introduction to Product and Manufacturing Information (PMI), Model Based Definitions (MBD), Applications of PMI & MBD

CAD Customization: Introduction, advantages and disadvantages, Applications of Customization Interfaces, Product Customization Approaches - Part Modeling Customization, Assembly Modeling Customization, Drawing sheets & PMI Customization, CAD Automation

Introduction to Application Programming Interface (API), Structures of APIs, Coding/Scripting for customization, Introduction to CAD API Development, CAD Files & application handling

Books & Other Resources

Text Books

- 1. Zeid, I and Sivasubramania, R., (2009), "CAD/CAM : Theory and Practice", 2nd edition, McGraw Hill Education, ISBN-13: 978-0070151345
- Rao, P. N., (2017), "CAD/CAM: Principles and Applications", 3rd edition, McGraw Hill Education, ISBN-13: 978-0070681934
- 3. Chang, Kuang-Hua, (2015), "e-Design: Computer-Aided Engineering Design", Academic Press, ISBN-13: 978-0123820389

Reference Books

- 1. Lee, Kunwoo, (1999), "Principles of CAD/CAM/CAE Systems", Pearson/Addison-Wesley, ISBN-13: 978-0201380361
- 2. Bordegoni, Monica and Rizzi, Caterina, (2011), "Innovation in Product Design: From CAD to Virtual Prototyping", Springer, ISBN-13: 978-1447161875
- 3. Vukašinovic, Nikola and Duhovnik, Jože, (2019), "Advanced CAD Modeling: Explicit, Parametric, Free-Form CAD and Re-engineering", Springer, ISBN-13: 978-3030023980
- 4. Um, Dugan, (2018), "Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory", 2nd edition, Springer, ISBN-13: 978-3319745930
- 5. Rogers, D. and Adams, J. A., (2017), "Mathematical Elements for Computer Graphics", 2nd edition, McGraw Hill Education, ISBN-13: 978-0070486775
- 6. Hearn, D. D. and Baker, M. P., (2013), "Computer Graphics with OpenGL", 4th edition, Pearson Education India, ISBN-13: 978-9332518711
- 7. Gokhale, N. S., Deshpande, S. S., Bedekar, S. V. and Thite, A. N., (2008), "Practical Finite Element Analysis", Finite to Infinite, Pune, India, ISBN-13: 978-8190619509
- 8. Lee Ambrosius, (2015), "AutoCAD[®] Platform Customization: User Interface, AutoLISP[®], VBA,

and Beyond", John Wiley & Sons, Inc., IN, ISBN-13: 978-1118798904

- 9. Bucalo, Joe and Bucalo, Neil, (2007), "Customizing SolidWorks for Greater Productivity", Sheet Metal Guy, LLC, ISBN-13: 978-0979566608
- Ziethen, Dieter R. (2012), "CATIA V5: Macro Programming with Visual Basic Script", McGraw-Hill Companies, Inc./Carl Hanser Verlag München, ISBN-13: 978-0071800020, ISBN: 978-007180003-7
- 11. Programming Manuals of Softwares

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Term Work Journal

Practical

The student shall complete the following Practical in laboratory using suitable CAD modeling software. Learner will demonstrate skills to communicate drawings as per industry standards.

- 1. 2-D sketching with geometrical and dimensional constraints
- 2. Solid & Surface modeling for simple mechanical components (Output file as Production drawing and Model Based Definition (MBD)

(a) Sheet-Metal	(b) Machining
(c) Fabrication	(d) Casting
(e) Forgings	(f) Plastic Molding

- 3. Assembly modeling (Output file as Assembly drawing and detailing) of the parts modeled in Practical assignment-2 using proper assembly constraint conditions and generation of exploded view for assemblies like Couplings, Clutches, Gear Assemblies, Engine/Pump/Turbine Components, Valves, Machine Tools, Automobile Components, Gear-Box, Pressure Vessels, etc.
- 4. Reverse Engineering of surface/solid modeling using Point Cloud Data.
- 5. Assembly Modeling by importing parts/components from free online resources like CAD and Product development software websites, forums, blogs, etc.
- 6. Demonstration on CAD Customization (with introduction to programming languages, interfacing)

	043 - Engineering Thermodynan	
Teaching Scheme	Credits	Examination Scheme
Theory : 03 Hr./Week	04	In-Semester : 30 Marks
Practical : 02 Hr./Week	Theory : 03 Practical : 01	End-Semester : 70 Marks Oral : 25 Marks
Prerequisite Courses Higher Secondary Science cour Engineering Chemistry	ses, Engineering Mathematics -	I and II, Engineering Physics
 To be acquainted with Entrop To understand the behaviour 	-	
CO2.APPLY laws of thermod CO3.APPLY entropy, availab CO4.DETERMINE the prope cycle. CO5.ANALYSE the fuel com	f thermodynamics with heat and w lynamics to steady flow and non-fl- le and non available energy for an erties of steam and their effect o bustion process and products of co umentations required for safe ar	ow processes. Open and Closed System. n performance of vapour powe ombustion.
generator.	Course Contents undamentals of Thermodynamic	s [07 Hr.
Introduction, Review of basic de Approach, State Postulate, State, static process, Equilibrium, T measurement of temperature), thermometer, mercury in glass the First Law of Thermodynamics First law of thermodynamics, Jou law to flow and non-flow Process	finitions, Zeroth law of Thermody Path, Process and Cycles, Point f emperature (concepts, scales, Constant volume gas thermome	Anamics, Macro and Microscopic Function and Path function, quas international fixed points and eter and constant pressure gas in convention and its conversion eat and work. Application of firs gy equation (SFEE), Applications
Unit II Ideal G	as and Second law of Thermody	namics [08 Hr.
Avagadro's Law, Equation of S Processes- on P-v and T-s diagr Polytropic, Throttling Processes done, Internal Energy. Second Law of Thermodynami Heat Engine, Refrigerator and H	al Gas: Ideal Gas definition, Gas State, Ideal Gas constant and Ur ams, Constant Pressure, Constant (Open and Closed systems), Calo cs: Limitations of first law of ther eat pump: Schematic representation teck & Clausius Statement of the S	niversal Gas constant, Ideal gas Volume, Isothermal, Adiabatic culations of Heat transfer, Worl rmodynamics, Thermal reservoir on, Efficiency and Coefficient o
PMM-II kind, Equivalence of the Irreversibility, Carnot Theorem/P	e two statements; Clausius Inequal rinciples, Carnot Cycle.	ity, Concept of Reversibility and
Unit III	Entropy and Availability	[08 Hr.
Entropy changes for an Open an	, Clausius Inequality, Principle on nd Closed System, Change of En eneration. Entropy - a measure of D	tropy for an ideal gas and Pure

Availability: Available and Unavailable Energy, Concept of Availability, Availability of heat source at constant temperature and variable temperature, Availability of non-flow and steady-flow Systems.

Unit IV Properties of Pure substances & Thermodynamics of Vapour Cycle [07 Hr.]

Properties of Pure substances: Formation of steam, Phase changes, Properties of steam, Use of Steam Tables, Study of P-v, T-s and h-s plots (Mollier Chart) for steam, Dryness fraction and its determination, Study of steam calorimeters (Barrel, Separating, Throttling and combined) Non-flow and Steady flow Vapour Processes, Change of Properties, Work and Heat transfer.

Thermodynamics of Vapour Cycle: Rankine Cycle, Comparison of Carnot cycle and Rankine cycle, Introduction to Steam power Plant, Efficiency of Rankine Cycle, Relative Efficiency, Effect of Varying operating parameters like Superheat, Boiler and Condenser Pressure on performance of Rankine cycle, Modified Rankine Cycle.

Unit V

Fuels and Combustion

Types of fuels, Proximate and ultimate analysis of fuel, Combustion theory, Combustion Equations, Theoretical and Excess air requirements, Equivalence ratio, Analysis of products of combustion, Calorific value - HCV & LCV. Bomb and Boys gas Calorimeters. Flue Gas Analysis using Orsat Apparatus, Exhaust Gas analyser, Enthalpy of formation, Adiabatic flame temperature.

Unit VI

Steam Generators & Boiler Draught

[08 Hr.]

[07 Hr.]

Steam Generators: Classification, Constructional details of low pressure boilers, Primary Features of high pressure (Power) boilers, Location, Construction and working principle of boiler, Boiler mountings and accessories, Instrumentations required for safe and efficient operation, Introduction to IBR Act, Boiler performance Calculations-Equivalent Evaporation, Boiler efficiency, Heat balance Sheet.

Boiler Draught: Classification, Necessity of Draught, Natural draught, Determination of Height of chimney, Diameter of chimney, condition for maximum discharge, Forced draught, Induced draught, Balanced draught, Draught losses.

Books & Other Resources

Text Books

- 1. P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill Publications
- 2. R. K. Rajput, "Engineering Thermodynamics", EVSS Thermo, Laxmi Publications
- 3. P. L Ballaney, "Thermal Engineering", Khanna Publishers
- 4. C.P. Arora, "Thermodynamics", Tata McGraw Hill
- 5. Domkundwar, Kothandaraman and Domkundwar, "Thermal Engineering", Dhanpat Rai Publishers
- 6. M M Rathore, "Thermal Engineering", Tata McGraw-Hill

Reference Books

- 1. Rayner Joel, "Basic Engineering Thermodynamics", AWL-Addison Wesley
- 2. Cengel and Boles, "Thermodynamics an Engineering Approach", McGraw Hill
- 3. G.VanWylen, R.Sonntag and C.Borgnakke, "Fundamentals of Classical Thermodynamics", John Wiley & Sons
- 4. Holman J.P, "Thermodynamics", McGraw Hill
- 5. M Achuthan, "Engineering Thermodynamics", PHI
- 6. Steam Tables/Data book

Guidelines for Laboratory Conduction

The student shall complete the following activity as Term Work

The Term work shall consist of successful completion of Practicals, and Industrial Visits. Oral Examination shall be based on the term work.

Practical

- 1. Joule's experiment to validate, first law of thermodynamics.
- 2. Survey of temperature sensors used in various thermal systems.
- 3. Determination of dryness fraction of steam using combined separating and throttling calorimeter.
- 4. Determination of HCV of solid or gaseous fuel using Bomb or Junker's calorimeter respectively.

- 5. Demonstration on Orsat Apparatus.
- 6. Trial on boiler to determine boiler efficiency, equivalent evaporation and Energy Balance.
- 7. Thermodynamic Analysis of any System / Model by using any Computer Software.
- 8. Energy and Exergy analysis of contemporary steam generator.

Industrial Visits

Visit to any Process Industry/Plant having Boiler equipped with Accessories.

The visit report consists of

- Details about the Industry/Process Plant.
- Operational description of the Equipment with specification, its use, capacity, application etc.

202044	- Engineering Materials and Met	tallurgy
Teaching Scheme	Credits	Examination Scheme
Theory : 03 Hr./Week	04	In-Semester : 30 Marks
Practical : 02 Hr./Week	Theory : 03 Practical : 01	End-Semester : 70 Marks Term Work : 25 Marks
	Plactical : 01	Term work : 23 Marks
Prerequisite Courses Higher Secondary Science cou Mechanical Engineering	rses, Engineering Physics, Engi	neering Chemistry, Systems ir
 To establish significance of st To explain various characteriz To indicate the importance of 	vation techniques. heat treatment on structure and pro-	
5. To explain the material select	ion process.	
 CO2.CORRELATE crystal st materials. CO3.DIFFERENTIATE and destructive testing of ma CO4.IDENTIFY & ESTIMA component, grains, grain CO5.ANALYSE effect of a nonferrous alloy. 	ctures and ASSESS different lattice ructures and imperfections in cryst DETERMINE mechanical proper	als with mechanical behaviour of rties using destructive and non- system viz., phases, variables . etc.
	Course Contents	
Unit I Crystal	Structures and Deformation of M	faterials [08 Hr.]
Crystal Structures: Study of	Crystal structures BCC, FCC, I imperfections, and Diffusion Mec	HCP and lattice parameters &
	cal (Impact, hardness, etc.), El	
	Clastic deformation, Plastic defo ecovery, re-crystallization and gr & Fatigue failures	1 0
Unit II Material	Testing and Characterization Te	chniques [06 Hr.]
Destructive Testing: Impact test,	Cupping test and Hardness test	
Non-Destructive Testing : Eddy (Principle and Applications only)	current test, Sonic & Ultrasonic te	esting, X-ray Radiography testing
	e Preparation and etching procedured d X-ray diffraction (Principle and A	1 1
Macroscopy: Sulphur printing, fl	ow line observation, spark test	
Unit III Phase	Diagrams and Iron-Carbon Dia	gram [09 Hr.]
	pes, Humerothery rule for substitut	0 . .
•	tal growth, solidification of pure m	
•	, types of phase diagrams, Gibbs p	•
e e	bon equilibrium diagrams in deta	

Unit IV

Heat Treatments

[08 Hr.]

Austenite transformation in steel: Time temperature transformation diagrams, continuous cooling transformation diagrams. Retained austenite and its effect

Steps in Heat treatment and Cooling Medium

Heat Treatment Processes: Introduction, Annealing (Full annealing, Process annealing, Spheroidise annealing, isothermal annealing, stress relief annealing), Normalising, Hardening, Tempering, Austempering, Martempering, Sub-Zero Treatment, Hardenability

Surface Hardening: Classification, Flame hardening, Induction hardening, Carburising, Nitriding, Carbonitriding

Ferrous Materials

Unit V

[07 Hr.]

Carbon Steel: Classification, types & their composition, properties and Industrial application

Alloy Steels: Classification of alloy steels & Effect of alloying elements, examples of alloy steels, (Stainless steel, Tool steel) sensitization of stainless steel

Designation of carbon steel and alloy steels as per IS, AISI, SAE Standards

Cast Iron: Classification, types & their composition, properties and Industrial application of (White CI, Gray CI, SG CI, Malleable Cast and alloy Cast Iron)

Microstructure and property relationship of various ferrous Materials

Unit VI

Non-Ferrous Materials

[07 Hr.]

Classification of Non-Ferrous Metals: Study of Non-ferrous alloys with Designation, Composition, Microstructure.

Mechanical & other properties for Industrial Applications: Copper and its Alloys (Gilding Metal, Cartridge Brass, Muntz Metal, Tin Bronze, Beryllium Bronze), Aluminium and its Alloy (LM5, Duralumin, Y-Alloy, Hinduminum), Nickel and its Alloys (Invar, Inconel), Titanium and its Alloys (α Alloys, α - β Alloys), Cobalt and its Alloys (Stellite Alloys, Alnico), Bearing Alloys (Classification, lead based alloys, tin based alloys), Age Hardening.

Microstructure and Property relationship of various Non-ferrous Materials.

Recent Material used in Additive Manufacturing: Properties, Composition and Application only

Books & Other Resources

Text Books

- 1. Dr. V. D. Kodgire & S. V. Kodgire, "Material Science & Metallurgy For Engineers", Everest Publication.
- 2. William D. Callister, "Materials Science and Engineering an Introduction", Jr, John Wiley & Sons, Inc.

Reference Books

- 1. A. K. Bhargava, C.P. Sharma, "Mechanical Behaviour & Testing of Materials", P H I Learning Private Ltd.
- 2. Raghvan V., "Material Science & Engineering", Prentice Hall of India, New Delhi. 2003
- 3. Avner, S.H., "Introduction to Physical Metallurgy", Tata McGraw-Hill, 1997.
- 4. Higgins R. A., "Engineering Metallurgy", Viva books Pvt. Ltd.
- 5. George Ellwood Dieter, "Mechanical Metallurgy", McGraw-Hill 1988
- 6. Smith, W.F, Hashemi, J., and Prakash, R., "Materials Science and Engineering in SI Units", Tata McGraw Hill Education Pvt. Ltd.

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Term Work Journal

Total 10 experiments from the following list must be performed. Term Work of the Student is evaluated based on the completion of Practical, Assignments, and Industrial Visits.

Practical (Any Seven)

- 1. Destructive testing Hardness testing (Rockwell/Vickers) Hardness conversion number
- 2. Brinell and Poldi hardness Test

- 3. Impact Test for Steel, Aluminum, Brass and Copper (Charpy/Izod)
- 4. Non Destructive testing Dye Penetrant Test/ Magnetic Particle test/ Ultrasonic Test
- 5. Steps for Specimen Preparation for microscopic examination & Demonstration of Optical Metallurgical microscope
- 6. Observation and Drawing of Microstructure of Steels, Cast Iron of various compositions
- 7. Observation and Drawing of Microstructure of Non Ferrous Metals of various compositions
- 8. Heat Treatment of steels based on relative hardness
- 9. Jominy End Quench Test for hardenability

Miniature commitment or Assignments (Any Two)

- 1. Exploration of engineering Alloy (Name, composition, properties, microstructure, Heat treatment, Designation & specific applications)- One student one Alloy or material
- 2. Examine aspects of component form material and manufacturing process point of view (Name, Material, Drawing, Manufacturing Process, properties, microstructure, Heat treatment, & specific applications) For example spur gear, Needle etc. One student one component
- 3. Creep and Fatigue Test (Virtual Lab IIT Bombay)
- 4. Fluorescence Microscope (Virtual Lab IIT Bombay)

Industrial Visits

To provide awareness and understanding of the course, Compulsory Industrial Visit must be arranged for the students.

The Industrial Visit must be preferably to

- Material & Metallurgy related like Engineering Cluster, NDT Lab, and Nearby NABL lab or
- Any manufacturing unit with material orientation

Student must submit a properly documented Industrial Visit Report.

Guidelines for Instructor's Manual

The Instructor's Manual should contain following related to every experiment:

- 1. Brief theory related to the experiment
- 2. Apparatus with their detailed specifications
- 3. Standard ASME/ IS numbers of test procedure
- 4. Schematic, Layout/diagram
- 5. Observation table/graphs.
- 6. Sample calculations for one/two reading
- 7. Result table, Graph and Conclusions.
- 8. 3/4 questions related to the experiment
- 9. Relevance of practical in industry with recent software of image analysis

Guidelines for Student's Lab Journal

The Student's Lab Journal should contain following related to every experiment:

- 1. Theory related to the experiment
- 2. Apparatus with their detailed specifications
- 3. Schematic, Layout/diagram
- 4. Observation table/simulation plots/graphs
- 5. Sample calculations for one/two reading
- 6. Result table. Graph and Conclusions
- 7. 3/4 questions related to the experiment
- 8. Attach Photo of experiment or image related to Experiment

Guidelines for Lab/TW Assessment

- 1. There should be continuous assessment for the TW
- 2. Assessment must be based on understanding of theory, attentiveness during practical, and understanding
- 3. Session, how efficiently the student is able to do connections and get the results
- 4. Online evolutions of practical with objective type of Questions
- 5. Timely submission of journal

	- Electrical and Electronics Engi	neering
Teaching Scheme	Credits	Examination Scheme
Theory : 03 Hr./Week Practical : 02 Hr./Week	04 Theory : 03	In-Semester : 30 Marks End-Semester : 70 Marks
Prerequisite Courses	Practical : 01	Term Work : 25 Marks
Basic Electrical Engineering, Bas	ic Electronics Engineering, System	s in Mechanical Engineering
 To interface Atmega328 based To study principle of operation To know about three phase in To get acquainted with Electric 	an open source platform and its bas d Arduino board with different dev on of DC machines and speed contro duction motor working and its appl ic Vehicle (EV) technology and sul nergy storage devices and electrica	ices and sensors of of DC motors ications osystems
Microcontroller in ember CO2.DEVELOP interfacing Atmega328 based Ardui CO3.UNDERSTAND the oper CO4.DISTINGUISH between CO5.EXPLAIN about emergi	g concepts to UNDERSTAND edded systems of different types of sensors an	d other hardware devices with rol methods and braking tor and its characteristic features (EV) and its modular subsystems
	Course Contents	
Unit I	Introduction to Arduino	[08 Hr.]
embedded platforms, Introduction	and microprocessors, role of en n to Arduino IDE- features, IDE or statements, Concept of GPIO in A	verview, Programming concepts:
Unit II	Peripheral Interface	[07 Hr.]
Unit II Interfacing of Atmega328 base communication using Arduino	Peripheral Interface ed Arduino board with LED a IDE, Concept of ADC in Atn I Arduino board with temperature	and LCD/serial monitor, serial nega328 based Arduino board,
Unit II Interfacing of Atmega328 base communication using Arduino interfacing of Atmega328 based	ed Arduino board with LED a IDE, Concept of ADC in Atn	and LCD/serial monitor, serial nega328 based Arduino board,
Unit II Interfacing of Atmega328 base communication using Arduino interfacing of Atmega328 based gauge Unit III	ed Arduino board with LED a IDE, Concept of ADC in Atn I Arduino board with temperature DC Machines , Constructional features of a DC	and LCD/serial monitor, serial nega328 based Arduino board, e sensor (LM35), LVDT, strain [08 Hr.]
Unit II Interfacing of Atmega328 base communication using Arduino interfacing of Atmega328 based gauge Unit III Generating and motoring action, machine and its significance in m Concept of torque developed by n dynamics of motor and load comb	ed Arduino board with LED a IDE, Concept of ADC in Atn I Arduino board with temperature DC Machines Constructional features of a DC otor motor and it's equation, Concept of bination, Characteristics of DC shu	and LCD/serial monitor, serial nega328 based Arduino board, e sensor (LM35), LVDT, strain [08 Hr.] machine, EMF equation of DC f load torque, Types of loads and ant motor, Speed control methods
Unit II Interfacing of Atmega328 base communication using Arduino interfacing of Atmega328 based gauge Unit III Generating and motoring action, machine and its significance in m Concept of torque developed by r dynamics of motor and load comb of DC shunt motor, Reversal of	ed Arduino board with LED a IDE, Concept of ADC in Atn I Arduino board with temperature DC Machines Constructional features of a DC otor motor and it's equation, Concept of bination, Characteristics of DC shu	and LCD/serial monitor, serial nega328 based Arduino board, e sensor (LM35), LVDT, strain [08 Hr.] machine, EMF equation of DC f load torque, Types of loads and ant motor, Speed control methods
Unit II Interfacing of Atmega328 base communication using Arduino interfacing of Atmega328 based gauge Unit III Generating and motoring action, machine and its significance in m Concept of torque developed by n dynamics of motor and load comb of DC shunt motor, Reversal of types, Regenerative braking in DC Unit IV Constructional features, working	ed Arduino board with LED a IDE, Concept of ADC in Atm I Arduino board with temperature DC Machines Constructional features of a DC otor motor and it's equation, Concept of bination, Characteristics of DC shu direction of rotation of DC moto C shunt motor Three Phase Induction Motors principle of three phase inductio of rotor resistance on characteristic	and LCD/serial monitor, serial nega328 based Arduino board, e sensor (LM35), LVDT, strain [08 Hr.] machine, EMF equation of DC f load torque, Types of loads and int motor, Speed control methods or, Braking in DC motor and its [07 Hr.] n motor, types, torque equation,
Unit II Interfacing of Atmega328 base communication using Arduino interfacing of Atmega328 based gauge Unit III Generating and motoring action, machine and its significance in m Concept of torque developed by n dynamics of motor and load comb of DC shunt motor, Reversal of types, Regenerative braking in DO Unit IV Constructional features, working torque-slip characteristics, effect motor with deep bar rotor constru Power stages, efficiency, starters	ed Arduino board with LED a IDE, Concept of ADC in Atm I Arduino board with temperature DC Machines Constructional features of a DC otor motor and it's equation, Concept of bination, Characteristics of DC shu direction of rotation of DC moto C shunt motor Three Phase Induction Motors principle of three phase inductio of rotor resistance on characteristic	and LCD/serial monitor, serial nega328 based Arduino board, e sensor (LM35), LVDT, strain [08 Hr.] machine, EMF equation of DC f load torque, Types of loads and ant motor, Speed control methods or, Braking in DC motor and its [07 Hr.] n motor, types, torque equation, cs, modification in squirrel cage

Unit V

Electric Vehicle (EV) Technology

Brief history of Electric Vehicle (EV), Components of EV, Benefits of EV

Types of EVs such as Battery EV, Hybrid EV, Plug-in EV, Fuel Cell EV and their comparison, Challenges faced by EV technology

Subsystems and configurations of EV, Subsystems of Hybrid EV, Configurations of series, parallel and series-parallel Hybrid EV

Impact of EV on grid, Vehicle to grid technology- block diagram

Unit VI

Energy Storage Devices and Electric Drives

[07 Hr.]

Storage Devices: Cell construction and working of batteries like Lithium- Iron Phosphate (LFP), Lithium Nickel-Manganese-Cobalt (NMC) and Lithium- Manganese Oxide (LMO), Voltage, Impedance, Ah and Wh Capacity, Cycle Life, Energy density, Power, C-rate and safety aspects

Use of supercapacitor and hydrogen fuel cell in EVs- necessity, advantages and specifications

Factors used in selection of energy storage device in case of EVs, Vehicle Battery Management System - block diagram

Electric Drives: Factors used for selection of the electric motor in EVs

BLDC hub motor drive for EVs, characteristics and speed control of BLDC motor, three phase induction motor drive for EVs

Books & Other Resources

Text Books

- 1. Barret Steven F, "Arduino Microcontroller Processing for Everyone!", 3rd Ed, Morgan and Claypool Publishers
- 2. Michael Margolis, "Arduino Cookbook", 2nd Ed, O'Reilly Media
- 3. Hughes Edward, "Electrical and Electronic Technology", Pearson Education
- 4. Ashfaq Husain, "Electric Machines", 3rd Ed, Dhanpat Rai & Sons
- 5. Bhattacharya S. K., "Electrical Machine", 3rd Ed, Tata McGraw Hill
- 6. Nagrath & Kothari, "Electrical Machines", Tata McGraw Hill
- 7. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press
- 8. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", 2nd Ed, CRC Press

Reference Books

- 1. Deshmukh Ajay, "Microcontrollers Theory and Applications", Tata McGraw Hill
- 2. Massimo Banzi, "Getting Started with Arduino", 2nd Ed, Maker Media, Inc.
- 3. Brad Kendall, "Getting Started With Arduino: A Beginner's Guide", Justin Pot and Angela Alcorn (Editors)
- 4. Lowe, "Electrical Machines", Nelson Publications
- 5. [A.E. Fitzgerald, Charles Kingsley, Stephen D. Umans, "Electrical Machines", 5th Ed, Tata McGraw Hill
- 6. Pillai S. K., "A First Course on Electrical Drives", New Age International (P) Ltd.
- 7. James Larminie, John Lowry, , "Electric Vehicle Technology Explained", Wiley
- 8. Dhameja Sandeep, "Electric Vehicle Battery Systems", Newnes
- 9. R. Krishnan, "Permanent Magnet Synchronous and Brushless DC Motor Drives", CRC Press

Web References

- 1. www.arduino.cc (for downloading Arduino IDE and information)
- 2. www.alldatasheet.com (for datasheets of components)
- 3. https://spoken-tutorial.org/tutorial-search/ (for video tutorials on Arduino)
- 4. https://swayam.gov.in/NPTEL (for e-learning courses and video lectures)

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Term Work Journal

Total 10 experiments from the following list must be performed. Term Work of the Student is

evaluated based on the completion of Practical, Assignments using Virtual Laboratory & Detailed Industrial Visit Report and Group Assignment using Case Study/Product Survey.

Practical - Electronics Engineering Laboratory (*Any four experiments to be performed*) Atmega328 based Arduino board can be used for following interfaces:

- 1. Interfacing of LED to blink after every 1 sec
- 2. Display data using serial communication with PC
- 3. Interfacing of LCD to display given message
- 4. Interfacing of temperature sensor (LM35) and display output on LCD/serial monitor
- 5. Interfacing of strain gauge sensor to measure parameters like pressure, weight, etc., and display the measured value
- 6. Interfacing of LVDT sensor to measure the displacement and display the measured value

Practical - Electrical Engineering Laboratory (Any four experiments to be performed)

- 7. Demonstration of use of starters for DC motor and three phase induction motor along with understanding of specifications on name plates of these machines
- 8. Brake test on DC shunt motor
- 9. Study of power electronic converter based DC motor drive
- 10. Study of electrical braking of DC shunt motor (Rheostatic/ Plugging/regenerative)
- 11. Load test on three phase induction motor
- 12. Torque- speed characteristics of three phase induction motor

Assignments using Virtual Laboratory

Virtual Labs project is an initiative of the Ministry of Human Resource Development (MHRD), Government of India under the aegis of National Mission on Education through Information and Communication Technology (NMEICT). Please visit the following link for exploring experiments on Electrical Machines: http://www.vlab.co.in/broad-area-electrical-engineering

Assign following experiments by applying Virtual Labs:

- 1. Speed control of DC shunt motor by armature and field resistance control
- 2. Speed control of slip ring induction motor by rotor resistance control

Please refer http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/Sadhya/experimentlist.html

Assignments using Case Study/Product Survey

Each group consisting of maximum five number of students should carry out a case study/product survey focused on various EVs available in Indian market. *Forming groups and allotment of specific task to the students group should be done at the beginning of semester so that students get sufficient time to carry out the survey and prepare a presentation.*

Students must

- Compare various models in each class.
- Study various main components of EVs
- A formal presentation on case study/product survey must be arranged before class/batch.

Industrial Visits

An industrial visit must be arranged to one of the following establishments during the semester. The Industrial Visit must be preferably to

- Automation/Manufacturing industries
- Battery/EV Charging Stations
- Retro-fitting Workshops of ICE vehicle to EVs
- EV Service Stations

Student must submit properly documented Detailed Industrial Visit Report in his/her own words.

Instructions for Laboratory Conduction

Electronics Engineering Laboratory

- 1. The instructor is expected to shortlist necessary experiments from the suggested list of experiments.
- 2. During the practical session the instructor may divide the total students in groups of 4 to 5 students and assign them different experiments.
- 3. Each student in the group is supposed to execute the program.
- 4. The faculty should check the result of all the groups.

Electrical Engineering Laboratory

- 1. Check whether the MCB / ELCB / main switch is off while preparing the set-up.
- 2. Make connections as per circuit diagram. Use flexible wire for connection of voltmeter and pressure coil connection of wattmeter. For the rest of the connections, use thick wires. Do not keep the connections loose. Get it checked by the faculty / Lab Assistant.
- 3. Perform the experiment only in presence of faculty or Lab Assistant.
- 4. Do the calculations and get these checked from the faculty.
- 5. After completion of experiment, switch off the MCB / ELCB / main switch.
- 6. Write the experiment in the journal and get it checked regularly after conducting

Guidelines for Instructor's Manual

The Instructor's Manual should contain following related to every experiment:

- 1. Brief theory related to the experiment.
- 2. Connection diagram /circuit diagram
- 3. Observation table
- 4. Sample calculations for one reading
- 5. Result table
- 6. Graph and Conclusions.
- 7. Data sheets of the ICs used(if any)

Guidelines for Student's Lab Journal

Electronics Engineering Laboratory

- 1. Title of the program should be mentioned
- 2. The algorithm of the program must be written
- 3. Flow Chart for each program has to be drawn on separate page
- 4. Input data has to be specified
- 5. Result of the program should be highlighted

Electrical Engineering Laboratory

- 1. Lab journal should be hand written
- 2. Circuit diagrams can be drawn on graph paper
- 3. Specifications of the instruments/machines used for conduction of practical should be mentioned in respective write-up
- 4. Conclusion of each experiment should be written by student at the end

Guidelines for Lab/TW/PR Assessment

- 1. Continuous assessment should be carried out time to time.
- 2. During assessment, faculty should put the remark by writing the word "Complete" and not simply "C". Put the signature along with the date at the end of experiment and also in the index.
- 3. Assess each laboratory experiment/virtual lab assignment/report of industrial visit/case study for 10 marks each as per following details:

Attendance in practical - 02 marks

Timely completion of journal -03 marks

Presentation of write-up and results - 02 marks

Depth of understanding - 03 marks

4. Maintain a continuous assessment sheet on the basis of which final TW marks can be offered.

202045 - Geometric Dimensioning and Tolerancing Lab					
Teaching Scheme	Credits	Examination Scl	heme		
Practical : 02 Hr./Week	01	Term Work : 2	25 Marks		
	Practical : 01				
Prerequisite Courses Systems in Mechanical Enginee Graphics	ring, Project Based Learning - I,	Workshop Practise, Er	ngineering		
 To apply various geometric a To include surface roughness To measure and verify position 	of industrial drawings ain basic Geometric Dimensioning nd dimension tolerances based on t symbols based on manufacturing p on tolerances with applied material for manufacturing and assembly	ype of fit process	ts		
CO2.READ & ANALYSE va CO3.APPLY geometric and c CO4.EVALUATE dimension	and ASME standards for drawing	с.			
	idelines for Laboratory Conduct				
	omplete the following activity as a				
evaluated based on the completic Practical (Assignment # 1 to 6 &	om the following list must be perfor on of Practical, Industrial Visit Rep 2 10 are compulsory; Select any Tw	ort and Group Assignm o from Assignment # 7	ent. to 9)		
· · ·	ollowing Practical in laboratory. I	earner will demonstrat.	te skills to		
Conventions in Machine D Rules, Styles, Conventions	out, Principles of Drawing and varawing, Dimensioning practices -		[02 Hr.]		
2. GD&T -					
(a) Terminology, Maximum GD&T, Datum Control	and Minimum Material conditions	, Features, Rules for	[02 Hr.]		
(b) Adding GD&T to a Desi	gn, Form Tolerances		[02 Hr.]		
(c) Orientation Tolerances, I			[02 Hr.]		
(d) Location Tolerances, Ru			[02 Hr.]		
3. Surface finish, Welding sym			[02 Hr.]		
	rial Drawings to understand standar	-	[04 Hr.]		
	Surface finish, welding symbols, et coduction Drawing, (c) Part Drawin				
	Assembly Drawing for Design, (ii)				
) Exploded Assembly Drawing, (iv)	•			
Drawing, (v) Patent Drawing		Schematic Assembly			
	ased on Type of Fits in Assembly		[02 Hr.]		
6. Tolerance Stacks-Up with su			[02 Hr.]		
1	DFM) with suitable examples		[02 Hr.]		
	is-assembly with suitable examples		[02 Hr.]		
9. Design for Safety with suita	V 1		[02 Hr.]		
10. Industrial visit / Case study					
	Books & Other Resources				

Text Books

- 1. Standards: ASME Y14.5 2018
- 2. Narayana, K. L., Kannaiah, P., Venkata Reddy, K., (2016), "Machine Drawing", 2nd edition, New Age International Publishers, New Delhi, India, ISBN-13: 978-8122440546
- 3. Bhatt, N. D. and Panchal, V. M., (2014), "Machine Drawing", Charotar Publishing House Pvt. Ltd, Anand, India, ISBN-13: 978-9385039232

Reference Books

- 1. Cogorno, G. R., (2020), "Geometric Dimensioning and Tolerancing for Mechanical Design", 3rd edition, McGraw-Hill Education
- 2. Blokdyk, Gerardus, (2019), "Geometric Dimensioning and Tolerancing: A Complete Guide 2020 Edition", 5STARCooks
- 3. Standards: ISO/TR 23605:2018, ISO 1101:2017, SP 46, IS 15054(2001)

202046 - Audit Course - III							
Teaching Scheme	Credits	Examination Scheme					
-	-	-					

GUIDELINES FOR CONDUCTION OF AUDIT COURSE

Faculty mentor shall be allotted for individual courses and he/she shall monitor the progress for successful accomplishment of the course. Such monitoring is necessary for ensuring that the concept of self learning is being pursued by the students 'in true letter and spirit'.

- If any course through Swayam/ NPTEL/ virtual platform is selected the minimum duration shall be of 8 weeks.
- However if any of the course duration is less than the desired (8 weeks) the mentor shall ensure that other activities in form of assignments, quizzes, group discussion etc. (allied with the course) for the balance duration should be undertaken.

In addition to credits courses, it is mandatory that there should be an audit course (non-credit course) from second year of Engineering. The student will be awarded grade as AP on successful completion of the audit course. The student may opt for any one of the audit courses in each semester. Such audit courses can help the student to get awareness of different issues which make an impact on human lives and enhance their skill sets to improve their employability. List of audit courses offered in the semester is provided in the curriculum. Students can choose one of the audit courses from the list of courses mentioned. Evaluation of the audit course will be done at institute level.

The student registered for audit course shall be awarded the grade AP and shall be included such grade in the Semester grade report for that course, provided student has the minimum attendance as prescribed by the Savitribai Phule Pune University and satisfactory in-semester performance and secured a passing grade in that audit course. No grade points are associated with this 'AP' grade and performance in these courses is not considered in the calculation of the performance indices SGPA and CGPA. Evaluation of the audit course will be done at institute level itself.

Selecting an Audit Course

List of Courses to be opted (Any one) under Audit Course III

- Technical English For Engineers
- Entrepreneurship Development
- Developing soft skills and personality
- Design Thinking
- Foreign Language (preferably German/ Japanese)
- Science, Technology and Society

The titles indicated above are subject to change in time to come and such an alteration (if any) should be brought to the notice of the BoS.

Using NPTEL Platform: (preferable)

NPTEL is an initiative by MHRD to enhance learning effectiveness in the field of technical education by developing curriculum based video courses and web based e-courses. The details of NPTEL courses are available on its official website www.nptel.ac.in

- Students can select any one of the courses mentioned above and has to register for the corresponding online course available on the NPTEL platform as an Audit course.
- Once the course is completed the student can appear for the examination as per the guidelines on the NPTEL portal.
- After clearing the examination successfully; student will be awarded with a certificate.

Assessment of an Audit Course

- The assessment of the course will be done at the institute level. The institute has to maintain the record of the various audit courses opted by the students. The audit course opted by the students could be interdisciplinary.
- During the course students will be submitting the online assignments. A copy of the same can be submitted as a part of term work for the corresponding Audit course.
- On the satisfactory submission of assignments, the institute can mark as "Present" and the student will be awarded the grade AP on the marksheet.

207	002 - Engineering Mathematics -	III	
Teaching Scheme	Credits	Examination	n Scheme
Theory : 03 Hr./Week	04		: 30 Marks
Tutorial : 01Hr/Week	Theory : 03 Practical : 01		: 70 Marks
	Practical : 01	Term Work	: 25 Marks
-	Differential equations of first ord resentation of data and Vector algebrased	-	Fourier series,
equations, Laplace transform Vector calculus.2. The aim is to equip them with	rize with concepts and techniques & Fourier transform, Statistical th the techniques to understand ad- ace analytical thinking power, usefu	methods, Probabil	ity theory and ematics and its
Course Outcomes	ice anarytical timking power, user	ii iii tileli tilselpiille	·ð.
solve differential equa mechanical engineering CO3.APPLY Statistical met experimental data appli- quality control. CO4.Perform Vector different flow problems.	orm techniques such as Laplace transations involved in vibration the applications. thods like correlation, regression cable to reliability engineering and tiation & integration, analyze the vitial equations such as wave equation	eory, heat transfer in analyzing an probability theory vector fields and A	r and related d interpreting in testing and PPLY to fluid
	Course Contents		
LDE of nth order with constant method, Short methods, Metho	fferential Equations (LDE) and A t coefficients,Complementary Fund od of variation of parameters, multaneous DE. Modelling of Mas	ction, Particular In Cauchy's and Le	egendre's DE,
Unit II	Transforms		[08 Hr.]
of LT to solve LDE.	standard functions, properties and the time integral theorem, Fourier transforms.		
Unit III	Statistics		[07 Hr.]
	easures of dispersion, Coefficient of ing of straight line, parabola and sion Estimates.		
Probability, Theorems on Probabi	lity, Bayes Theorem, Random vari		-
UnitV	l, Poisson, Normal, Test of Hypoth Vector Calculus	esis. Chi-square te	
Vector differentiation, Gradien	t, Divergence and Curl, Direct ies. Line, Surface and Volume int		

Unit VI

Applications of Partial Differential Equations (PDE)

[08 Hr.]

Basic concepts, modeling of Vibrating String, Solution of Wave equation, One and two dimensional Heat flow equations, Method of separation of variables, use of Fourier series. Solution of Heat equation by Fourier transforms.

Books & Other Resources

Text Books

- 1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi

Reference Books

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics', 10e, by Wiley India.
- 2. M. D. Greenberg, "Advanced Engineering Mathematics", 2e, by Pearson Education.
- 3. Peter V. O'Neil, "Advanced Engineering Mathematics", 7e, by Cengage Learning
- 4. S. L. Ross, "Differential Equations", 3e by Wiley India.
- 5. Sheldon M. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", 5e, by Elsevier Academic Press

Guidelines for Tutorial and term Work

- 1. Tutorial shall be engaged in four batches (batch size of 20 students maximum) per division.
- 2. Term work shall be based on continuous assessment of six assignments (one per each unit) and performance in internal tests. The student shall complete the following activity as a Term Work Journal.

202047 - Kinematics of Machinery						
Teac	Teaching Scheme Credits Examination Scheme					
Theory	: 03 Hr./Week	04	In-Semester :	30 Marks		
Practical	: 02 Hr./Week	Theory : 03	End-Semester :	70 Marks		
		Practical: 01	Oral :	25 Marks		
Engineering Course Obj 1. To make industria	Mechanics, Geometri ectives e the students convers al applications.	ring, Engineering Mathematics - ic Modeling & Drafting ant with kinematic analysis of me to analyze the velocity and ac	echanisms applied to	o real life and		
 analytica To devente techniqu To deventa applicati 	al and graphical appro lop the skill to propo e. lop the competency to ons.		ns using graphical a s of gear theory to c	and analytica		
CO2.AN CO3.SY CO4.AP	IALYZE velocity and NTHESIZE a four base PLY fundamentals of	sis to simple mechanisms acceleration in mechanisms by ve r mechanism with analytical and g gear theory as a prerequisite for g le for given follower motion	raphical methods	nethod		
	1	Course Contents				
Unit I		Fundamentals of Mechanism		[07 Hr.		
pairs, Kiner Mechanism, its Inversion Equivalent Turning Pair	natic chain, Types of Inversion, Grashoff ns, Double slider cra Linkages and its Cas rs, Cam Pair in Place of	5	Degree of freedom versions, Slider cra Mechanisms with urning Pairs, Sprin	, Mobility o nk Chain an Higher pairs g in Place o		
Unit II		Analysis of Mechanisms: Analyti		[07 Hr.		
Velocity an Complex Al	d acceleration analys gebra Methods. Comp	ent, velocity and acceleration ana sis of Four-Bar and Slider crank puter-aided Kinematic Analysis of Single and Double Hook's joint	mechanisms using	g Vector and		
Unit III		Analysis of Mechanisms: Graphi		[08 Hr.		
(Mechanism Velocity rat	is up to 6 Links), I tio Theorem, Analys	celeration analysis mechanisms nstantaneous Centre of Velocity sis of mechanism by ICR metho on (Theoretical treatment only)	, Kennedy's Theor	rem, Angula		
Unit IV		Synthesis of Mechanisms		[07 Hr.		
synthesis - I spacing, Me	Path, function and me chanical and structura		, Precision Position	s, Chebyche		
Graphical	Synthesis: Inversion	and relative pole method for thre	e position synthesis	s of Four-B		

Analytical Synthesis: Three position synthesis of Four-Bar mechanism using Freudenstein's equation, Blotch synthesis

Unit V

Kinematics of Gears

[08 Hr.]

Gear: Classification

Spur Gear: Terminology, law of gearing, Involute and cycloidal tooth profile, path of contact, arc of contact, sliding velocity, Interference and undercutting, Minimum number of teeth to avoid interference, Force Analysis (theoretical treatment only)

Helical and Spiral Gears: Terminology, Geometrical Relationships, virtual number of teeth for helical gears

Bevel Gear & Worm and Worm Wheel: Terminology, Geometrical Relationships

Gear Train: Types, Analysis of Epicyclic gear Trains, Holding torque - simple, compound and Epicyclic gear Trains, Torque on Sun and Planetary gear Train, compound Epicyclic gear Train

Unit VIMechanisms in Automation Systems[08 Hr.]

Cams & Followers: Introduction, Classification of Followers and Cams, Terminology of Cam Displacement diagram for the Motion of follower as Uniform velocity, Simple Harmonic Motion (SHM), Uniform Acceleration and Retardation Motion (UARM), Cycloid motion, Cam Profile construction for Knife-edge Follower and Roller Follower, Cam jump Phenomenon

Automation: Introductions, Types of Automation

Method of Work Part Transport: Continuous transfer, Intermittent or Synchronous Transfer, Asynchronous transfer, Different type of transfer mechanisms - Linear transfer mechanisms and Rotary transfer mechanisms

Automated Assembly-Line: Types, Assembly line balancing Buffer Storages, Automated assembly line for car manufacturing, Artificial intelligence in automation

Books & Other Resources

Text Books

- 1. S. S. Rattan, "Theory of Machines", Third Edition, McGraw Hill Education (India) Pvt. Ltd., New Delhi.
- 2. Bevan T, "Theory of Machines", Third Edition, Longman Publication
- 3. G. Ambekar, "Mechanism and Machine Theory", PHI
- 4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth Edition, International Student Edition, Oxford

Reference Books

- 1. Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw Hill Publication
- 2. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York
- 3. Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata McGraw Hill Publication
- 4. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.
- 5. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication
- 6. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill Education (India) P Ltd. New Delhi
- 7. Sadhu Singh, "Theory of Machines", Pearson
- 8. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons
- 9. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI
- 10. M.P. Groover, "Automation, production systems and computer-integrated manufacturing", Prentice-Hall of India Pvt. Ltd, New Delhi

Web References

- 1. https://nptel.ac.in/courses/112104121/ (NPTEL1, Kinematics of Machines, Prof. Ashok K Mallik, IIT Kanpur)
- 2. https://nptel.ac.in/courses/112/106/112106270/ (NPTEL2, Theory of Mechanism, Prof. Sujatha Srinivasan, IIT Madras)

- 3. https://nptel.ac.in/courses/112/105/112105268/ (NPTEL3, Kinematics of Mechanisms and Machines, Prof. Anirvan DasGupta, IIT Kharagpur)
- 4. https://nptel.ac.in/courses/112/105/112105236/ (NPTEL4, Mechanism and Robot Kinematics, Prof.Anirvan DasGupta, IIT Kharagpur)
- http://www.cdeep.iitb.ac.in/webpage_data/nptel/Mechanical/Robotics Course/Course_home_lect1.html (NPTEL5, Introduction to Robotics and Automation, IIT Bombay)

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Term Work

Total 10 experiments from the following list must be performed. Term Work of the Student is evaluated based on the completion of Practical, Assignments using Drawing Aids, Assignments using Software & Programming Languages, Assignments using Virtual Laboratory and Detailed Industrial Visit Report.

Practical (*Experiment # 1 is compulsory and Select any Two from Experiment # 2 to 4*)

- 1. To make a model of any mechanism by using waste material by the group of 4 to 6 students and to give a presentation using PPTs.
- 2. Speed and torque analysis of epicyclic gear train to determine holding torque.
- 3. To study and verify cam jump phenomenon.
- 4. To study manufacturing of gear using gear generation with rack as a cutter and to generate an involute profile.

Assignments using Drawing Aids (*Experiment #1 to 3 and 6 are compulsory and Select any One from Experiment #4-5*)

Do following graphical assignments on Half Imperial drawing sheet:

- 1. Identify mechanisms in real life and Analyze for types and number of links, pairs, obtain degrees of freedom. Submit the sheet and working video of the mechanism.
- 2. To solve two problems on velocity and acceleration analysis using relative velocity and acceleration method.
- 3. To solve two problems on velocity analysis using the ICR method.
- 4. To draw conjugate profile for any general type of gear tooth.
- 5. To study various types of gearboxes.
- 6. To draw cam profile for any two problems with combination of various follower motion with radial and off-set cam.

Assignments using Software (Any Three Assignments - Minimum one computer programming based and Minimum one based on use of software)

Do following assignments by using Software or by using Coding/Programming Languages:

- 1. To design a simple Planer Mechanism by using any software (Geogebra, SAM, Working Model, any 3D Modelling Software, etc.)
- 2. To do computer programming (using software/programming languages like C, Python, Scilab, Matlab etc.) for Kinematic Analysis of Slider Crank Mechanism using Analytical Method
- 3. To do computer programming (using software/programming languages like C, Python, Scilab, Matlab etc.) for Kinematic Analysis of Hooke's joint Mechanism using Analytical Method
- 4. To generate a Cam Profile using any Modelling Software (Mech Analyser, any 3D Modelling Software)
- 5. To synthesize the Four-Bar and Slider Crank Mechanism (Geogebra, SAM, any 2D/3D Modelling Software)
- 6. To do computer programming (using software/programming languages like C, Python, Scilab, Matlab etc.) for the Synthesis of Mechanism using Chebychevs spacing, Freudensteins equation and function generation

Assignments using Virtual Laboratory (minimum Two experiments)

Please visit the links given below for exploring experiments on Kinematics of Machinery using Virtual Laboratory. Write a Brief Reports of using Virtual Laboratory to perform following assignment:

- 1. Mechanics-of-Machines Lab (All Experiments), http://mm-nitk.vlabs.ac.in/index.html
- 2. Mechanisms and Robotics Oldham Coupling Mechanism,

http://vlabs.iitkgp.ernet.in/mr/index.html

- 3. Mechanisms and Robotics Quick Return Mechanism, http://vlabs.iitkgp.ernet.in/mr/index.html
- 4. Mechanisms and Robotics CAM Follower Mechanism, http://vlabs.iitkgp.ernet.in/mr/index.html

Industrial Visits

A Compulsory industrial visit must be arranged to industries/ establishments consisting automation and mechanization during semester to provide awareness and understanding of the course. The Industrial Visit must be preferably to

- Manufacturing industries with Assembly-line Automation
- Sugar factory
- Bottle filling plants

Student must submit properly documented Detailed Industrial Visit Report in his/her own words.

Assignments on Content beyond syllabus

Following assignments can be attempted:

- 1. Forward and Inverse Kinematics of 2R/2P/PR Manipulators using Software (Geogebra, Robo Analyser, Vlab, etc.)
- 2. Kinematic Analysis of 6 DOF Industrial Robot using Software (RoboAnalyzer, Vlab, etc.)

202061 – Thermal Engineering			
Teaching SchemeCreditsExamination Scheme		Scheme	
Theory : 03 Hr./Week	04	In-Semester :	30 Marks
Practical : 02 Hr./Week	Theory: 03	End-Semester :	70 Marks
	Practical : 01	Oral :	25 Marks
Prerequisite Courses Engineering Thermodynamics, S Engineering Mathematics - II	Systems in Mechanical Engineerin	g, Engineering Math	nematics - I
 To determine COP of refrige To study Psychrometric prop To study Air standard, Fuel-4 To understand IC Engine sys To study Combustion, emission Course Outcomes On completion of the course, lear	erties and processes. Air and Actual cycles and their Perfettems. ion and performance of an IC Engin rner will be able to	ormance. es.	
CO2.DETERMINE performa CO3.IDENTIFY factors affe CO4.COMPARE various air	ance of reciprocating air compresson ance of refrigeration systems. cting the air conditioning systems. standard cycles and gas turbine cyc ng of various IC Engine systems. ance of an IC Engine.		
	Course Contents		
Unit I	Air Compressor		[07 Hr.]
details of single and multistage	fication of compressors, Reciproc e compressor, computation of wor learance, volumetric efficiency, nee pressor.	k done, isothermal	work done,
	ic principles, classification, constr pressors. (Descriptive treatment onl	-	roots, vane,

Definition, refrigeration load, unit of refrigeration, reverse Carnot cycle, systems of refrigeration, Vapour compression refrigeration cycle (VCR), effect of operating parameters on VCR, use of P-h charts, refrigerants and its nomenclature, classification of refrigerants, properties of refrigerants, simple vapour absorption system ,comparison of vapour compression and vapour absorption cycle.

Unit III

Psychrometry and Air conditioning

[09 Hr.]

Introduction, Comfort, Factors affecting Comfort, Psychrometry and Psychrometric Properties, Psychrometric Processes & Psychrometric Relations, Psychrometric Chart.

Air conditioning- Classification based on season and based on arrangement (Layout and working), Air conditioning used in automobiles, air crafts.

Unit IVAir standard cycle and Gas Turbines cycle[09 Hr.]Assumptions Otto cycle, Diesel cycle, Dual cycle – Air standard efficiency and mean effective
pressure. Comparison of Air standard with Fuel and Actual cycle.[09 Hr.]

Thermodynamic cycles of gas turbines, classifications, cycle analysis, work ratio, concept of actual cycle, effect of regeneration, intercooling, reheating and their effect on performance of gas turbine cycle. , application of gas turbine. Introduction of jet engine.

Unit V

IC Engines

[07 Hr.]

Fuel feeding system, Carburetion and Injection system, Starting system, Ignition System, Engine Cooling System, Lubrication system, Governing System.

Supercharging: Need for supercharging, supercharging and turbo charging, types of superchargers Limitations of supercharging in SI and CI engines (Descriptive treatment).

Unit VITesting & Performance of IC Engines[07 Hr.]Performance parameters, Determination of brake power, indicated power, friction power.Determination of brake thermal efficiency, mechanical efficiency, volumetric efficiency, Energy
Balance sheet.

Introduction to **Normal combustion and abnormal combustion** in SI and CI engine.

Emissions from SI and CI engines – Sources and methods to control emissions, Catalytic converters–construction and working (elementary treatment).

Books & Other Resources

Text Books

- 1. Ganesan V, Internal combustion engines, Tata McGraw Hill.
- 2. Mathur and Sharma, Internal combustion engines, Dhanpatrai and Company.
- 3. Arora and Domkundwar, Refrigeration and air conditioning, Dhanpatrai and Company
- 4. C P Arora, Engineering Thermodynamics, Tata McGraw Hill
- 5. Khurmi and Gupta, A textbook of Thermal engineering, S. Chand

Reference Books

- 1. Heywood: Internal combustion Engine Fundamentals, Tata McGraw-Hill
- 2. C P Arora: Refrigeration and Air conditioning, Tata McGraw Hill

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Term Work

Experiments: Minimum **six experiments** from the followings.

- 1. Trial on reciprocating air compressor to find volumetric efficiency and Isothermal Efficiency
- 2. Trial on refrigeration test rig to find the theoretical COP, actual COP and relative COP
- 3. Trial on air conditioning test rig to study any two psychrometric processes.
- 4. Test on diesel engine to determine BP, bsfc, thermal efficiency, and volumetric efficiency
- 5. Trial on Petrol engine-Morse test
- 6. Existing norms of emissions.
- 7. Performance estimation of VCC using any professional software (Cool Pack etc.)
- 8. Demonstration of exhaust gas analyzer and smoke meter

Activity (Any one)

- 1. Dismantling and assembly of I C engine and its report.
- 2. Writing detail report on recent technology of engine/ Refrigerator/Air conditioner.

Visit (Any one)

- 1. Visit to Central air conditioning system/Refrigeration plant.
- 2. Visit to Engine manufacturing unit/ assembly shop/ workshop.

2020	202062 - Fluid Mechanics and Machinery		
Teaching Scheme	Credits	Examination Scheme	
Theory : 03 Hr./Week	04	In-Semester : 30 Marks	
Practical : 02 Hr./Week	Theory: 03	End-Semester : 70 Marks	
	Practical : 01	Oral : 25 Marks	
Physics Course Objectives	ngineering Mathematics - II, Engi		
 To study basics of flow visuali To understand losses in flow and To learn to establish the basic of To understand the principles and 	of fluids and learn the fluid statics zation and understand the Bernoull nd establish relation between flow p equations for turbo machines and st ad operations of different types of H ems, principles, operations and app	i's theorem. parameters. tudy of impulse turbine. Reaction Turbine.	
Course Outcomes			
of buoyancy.	properties of fluid and APPLY the	-	
principles of fluid dynar CO3. ESTIMATE friction and	id flow and terms associated in flui nics. d minor losses in internal flows and dimensionless parameters.		
CO4. APPLY momentum prin Pelton wheel for its anal	nciple and DRAW the velocity triaty sis		
DETERMINE performa CO6. UNDERSTAND the co	nstruction and working of different nce parameters of different reaction nstruction and working of centrifug	n turbines.	
performance parameters			
	Course Contents		
	tion of Fluid Mechanics And Flui		
Introduction to Fluid Mechanics, Dynamic viscosity, Kinematic pressure. Newton's law of Viscos Fluid Statics: Pascal's law, Pre- plane, Inclined and curved surf submerged and floating bodies (N	nics: Fluid – definition, disting Properties of Fluid: Mass density, viscosity, Surface tension, capi ity, Types of Fluid (Rheological D ssure at a point, Total pressure, C aces, Buoyancy, Metacenter and to numerical on Buoyancy, metace	Specific density, specific gravity, llarity, compressibility, Vapour iagram) Centre of pressure, Pressure on a Metacentric height, stability of nter, floatation)	
Unit II Flu	uid Kinematics and Fluid Dynam	ics [07 Hr.]	
and Eulerian Descriptions, Visual and velocity potential function. (S Fluid Dynamics: Forces acting o	id Flows, Continuity Equation (Calization of flow field (stream, path Simple numerical). n a Control volume, Euler's equatitions & Derivation), Applicat	and streak Line); Stream function	
Venturimeter, Orifice meter, Not tube)	ches, Pitot tube (No derivation and	l numerical for Notches and Pito	
	w Through Pipes and Internal F		
Major/frictional losses, Minor lo energy line, Pipes in series, Pipes of Power (no derivations for mino	luid friction for Laminar and Turb sses in pipe fittings and valves, l s in parallel and concept of Equiva or losses, simple Numericals). urbulent flow physics, Velocity a	Hydraulic gradient line and tota lent Pipe, Siphons, Transmission	

laminar flow in a pipe, fixed parallel plates (simple numerical on velocity, pressure gradient and shear stress). Dimensional Analysis: Buckingham π theorem, important dimensionless numbers.

Unit IV **Impact of Jet And Impulse Water Turbine** [10 Hr.]

Impact of Jet: Impulse momentum principle and its applications, Force exerted on fixed and moving flat plate, hinged plate, curved vanes, series of flat plates and radial vanes, velocity triangles and their analysis, work done equations.

Impulse Water Turbine: Classification of hydraulic turbines construction, Pelton Wheel: principle of working, velocity diagram and analysis, design aspects, specific speed, performance characteristics

Unit V

Reaction Water Turbines

[09 Hr.]

Classifications, Francis and Kaplan turbine, constructional details, Velocity diagrams an analysis, Design aspects, Draft tubes, performance characteristics, unit quantities, Specific speed, Cavitation. [08 Hr.]

Unit VI **Centrifugal Pumps**

Classification of rotodynamic pumps, components of centrifugal pump, types of heads, velocity triangles and their analysis, cavitation, NPSH, Thoma's cavitation factor, priming of pumps, installation, specific speed, performance characteristics of centrifugal pump, selection of pumps

Books & Other Resources

Text Books

- 1. Sukumar Pati, "Fluid Mechanics and Hydraulics Machines", TATA McGraw Hill.
- 2. Modi P. N. and Seth S. M, "Hydraulics and Fluid Mechanics", Standard Book House.
- 3. Cengel & Cimbla, "Fluid Mechanics", TATA McGraw-Hill
- 4. F. M. White, "Fluid Mechanics", TATA McGraw-Hill
- 5. R. K. Bansal, "Fluid Mechanics & Hydraulic Machines", Laxmi Publication
- 6. Theory of hydraulic Machinery, V. P. Vasandani
- 7. Hydraulic Machines, J. Lal, Metropolitan Book

Reference Books

- 1. Kundu, Cohen, Dowling, "Fluid Mechanics", Elsevier India
- 2. Chaim Gutfinger David Pnueli, "Fluid Mechanics" Cambridge University press.
- 3. Edward Shaughnessy, Ira Katz James Schaffer, "Introduction to Fluid Mechanics", Oxford University Press
- 4. Munson, Young and Okiishi, "Fundamentals of Fluid Mechanics", Wiley India
- 5. Potter Wiggert, "Fluid Mechanics", Cengage Learning
- 6. Fox, Pichard, "Introduction to Fluid Mechanics", McDonald- Wiley

Web References

- 1. https://nptel.ac.in/courses/112/105/112105171/
- 2. https://nptel.ac.in/courses/112/104/112104118/
- 3. https://nptel.ac.in/courses/112/105/112105269/
- 4. http://www.efluids.com/efluids/books/efluids_books.htm
- 5. http://web.mit.edu/hml/ncfmf.html
- 6. http://www.efluids.com/efluids/pages/edu_tools.htm
- 7. https://spoken-tutorial.org/tutorial-search/?search_foss=OpenFOAM&search_language=

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Term Work

Perform any Eight experiments. During Oral, the Student is evaluated based on the completion of Practical, Assignments using Virtual Lab and Detailed Mini project / Industrial Visit Report/ Simulation of fluid flow / Programming using any suitable software.

- 1. Study of pressure measuring devices.
- 2. Determination of viscosity of liquids and its variation with temperature.
- 3. Verification of modified Bernoulli's equation.
- 4. Calibration of venture meter / orifice meter.

5. Determination of Reynolds number and flow visualization of laminar and turbulent flow using Reynolds apparatus.

6. Determination of major losses through pipes.

7. Determination of minor losses through pipes.

8. Verification of momentum principle.

9. Study and trial on Pelton wheel and plotting of operating/Main characteristics.

10. Visit to hydro power plant / Pumping Station and report to be submitted.

11. Study and trial on centrifugal pump and plotting of operating characteristics.

Assignments using Virtual Laboratory (Any Two Virtual Lab experiments from experiment mentioned above)

Please visit the links given below for exploring and performing experiments on Fluid Mechanics using Virtual Laboratory. Write brief Reports using Virtual Laboratories:

1. https://eerc03-iiith.vlabs.ac.in/

2. <u>http://fm-nitk.vlabs.ac.in/</u>

	202063 - Manufacturing Engineering		
Teaching SchemeCreditsExamination Scheme			
Theory : 03 Hr./Week	03 Theory : 03	In-Semester : 30 Marks End-Semester : 70 Marks	
Prerequisite Courses Material Science and Metallurgy,	Engineering Physics, Systems in N	Mechanical Engineering	
Engineering Sandwich program. casting and special casting proc principles. It includes understand limitation, application, materials, elaborate on the theory of metal	ourse in Manufacturing Engineer This course would encompass resses, Forming methods, Welding ding of basic concept of manufacturing and classification of manufacturing cutting supplemented with nume lculations and determination of too	a comprehensive study of sand g techniques, and Metal cutting cturing, need, scope, advantages, ng processes. This course would erical problems on estimation of	
time, and DESIGN rises CO2. DEMONSTRATE met load required for flat ro CO3. CLASSIFY and EXPL characteristics. CO4. IDENTIFY lathe opera orthogonal cutting and CO5. DISTINGUISH drilling UNDERSTAND metho	nolding, core making and melting pro- r size and location for sand casting p al forming operations, CLASSIFY a lling. AIN different welding processes and tions, CALCULATE machining tim DETERMINE tool life. g and milling operations, CALCULA ods of Indexing. ng and Grinding operations, CALCU	orocess. applications and CALCULATE d EVALUATE welding ale, shear angle, cutting forces in ATE machining time, and	
	Course Contents		
Unit I	Casting Processes	[06 Hr.]	
Introduction to casting processes,	Patterns: Pattern materials, types	of pattern, allowances, Moulding	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of	making, Melting furnaces, Pour ld filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects	ld filling time, Riser design and pl casting, Directional and Progress	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat Rolling Process : Rolling termino	ld filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of m ion logy, Friction in rolling, Calculation	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and ld casting, Investment casting, [06 Hr.] naterial, Hot and Cold working,	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat Rolling Process : Rolling termino Forging : Open and closed die for	ld filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of n ion logy, Friction in rolling, Calculation rging, Forging operations	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and ld casting, Investment casting, [06 Hr.] naterial, Hot and Cold working,	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat	Id filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of n ion logy, Friction in rolling, Calculation rging, Forging operations	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and ld casting, Investment casting, [06 Hr.] naterial, Hot and Cold working,	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat Rolling Process : Rolling termino Forging : Open and closed die for Extrusion : Types, Process param	Id filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of n ion logy, Friction in rolling, Calculation rging, Forging operations	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and ld casting, Investment casting, [06 Hr.] naterial, Hot and Cold working, on of rolling load in flat rolling	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat Rolling Process : Rolling termino Forging : Open and closed die for Extrusion : Types, Process param Wire and Tube Drawing : Wire a	Id filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of n ion logy, Friction in rolling, Calculation ging, Forging operations eter	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and ld casting, Investment casting, [06 Hr.] naterial, Hot and Cold working, on of rolling load in flat rolling "ile y, Dies	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat Rolling Process : Rolling termino Forging : Open and closed die for Extrusion : Types, Process param Wire and Tube Drawing : Wire a	Id filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of m ion logy, Friction in rolling, Calculation rging, Forging operations eter and tube drawing process, Die prof	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and ld casting, Investment casting, [06 Hr.] naterial, Hot and Cold working, on of rolling load in flat rolling	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat Rolling Process : Rolling termino Forging : Open and closed die for Extrusion : Types, Process param Wire and Tube Drawing : Wire a Sheet Metal Forming: Press-won Unit III	Id filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of n ion logy, Friction in rolling, Calculation ging, Forging operations eter and tube drawing process, Die prof rking operations, Press terminology	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and ld casting, Investment casting, [06 Hr.] naterial, Hot and Cold working, on of rolling load in flat rolling "ile y, Dies [06 Hr.]	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat Rolling Process : Rolling termino Forging : Open and closed die for Extrusion : Types, Process param Wire and Tube Drawing : Wire a Sheet Metal Forming: Press-won Unit III Classification of joining processes	Id filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of m ion logy, Friction in rolling, Calculation rging, Forging operations eter and tube drawing process, Die prof rking operations, Press terminology Welding Processes	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and ld casting, Investment casting [06 Hr.] on of rolling load in flat rolling ile y, Dies [06 Hr.] of joints	
sand and its Properties, Core Numerical estimation to find mol of cooling and solidification of Finishing of casting, Defects Centrifugal casting. Unit II Plastic deformation, Stress-strain Factors affecting plastic deformat Rolling Process : Rolling termino Forging : Open and closed die for Extrusion : Types, Process param Wire and Tube Drawing : Wire a Sheet Metal Forming: Press-won Unit III Classification of joining processes Arc Welding Processes : Princip MIG, SAW	Id filling time, Riser design and pl casting, Directional and Progress and remedies, Permanent moul Metal Forming Processes a diagram for different types of m ion logy, Friction in rolling, Calculation ging, Forging operations eter and tube drawing process, Die prof rking operations, Press terminology Welding Processes s, Welding terminology and types of	ring and Gating system design, lacement, Poring time, Principles sive solidification, Cleaning and d casting, Investment casting [06 Hr.] naterial, Hot and Cold working on of rolling load in flat rolling "ile y, Dies [06 Hr.] of joints rbon arc welding, FCAW, TIG	

Unit IV	Metal Cutting Principle	[06 Hr.]
Lathe: Construction and working c	of lathe, lathe operations, taper turning methods, Conce	ept of speed,
feed, depth of cut, Concept of cuttin calculations.	ng variables and their effect on cutting forces, Machini	ing time
	geometry, Determination of shear angle, chip thic ircle, Tool materials, Tool life, Tool wear, Cutting flui	,
Unit V	Drilling and Milling	[06 Hr.]
Drilling : Types of drilling machines, Types of drill, Twist drill geometry, tool holder, operations, calculation of machining time.		
Milling: Types of milling machines, Its construction, working and mechanisms, Cutter- types,		
geometry and their applications, Universal dividing head, methods of indexing. Numerical on		
Indexing, machining time calculation	ons.	
Unit VI	Broaching and Grinding	[06 Hr.]

Broaching: Broach types, Broach nomenclature, Broaching machines, Applications in broaching. **Grinding**: Grinding operations, Types of machines, Selection on grinding wheels, loading and glazing, dressing and truing, mounting of wheels, Calculation of machining time for cylindrical and surface grinding. Lapping and Honing processes.

Books & Other Resources

Text Books

- 1. P. N. Rao, "Manufacturing Technology Vol. I & II", Tata McGraw Hill Publishers
- 2. P. C. Sharma, "Production Engineering", Khanna Publishers

Reference Books

- 1. R. K. Jain, "Production Technology", Khanna Publishers
- K. C. Chawala, "Composite Materials", Springer, ISBN 978-0387743646, ISBN 978-0387743653
- 3. Hajara Choudhari, Bose S. K., Elements of Workshop Technology Vol. I & II Asia Publishing House.
- 4. R S Parmar, Welding process and technology, Khanna Publisher, New Delhi (2004).
- 5. A. Brent Strong, "Fundamentals of Composites Manufacturing: Materials, Methods", SME Book series

202051 - Machine Shop		
Teaching SchemeCreditsExamination Scheme		
Practical : 02 Hr./Week	01 Practical : 01	Term Work : 50 Marks
Prerequisite Courses Workshop Practice		
forming processes through der 2. To understand TIG/ MIG/ Res 3. To acquire skills to handle gri	edures, types of equipment, tooling monstrations and/(or) Industry visi sistance/Gas welding techniques. nding and milling machine and to composite part by manual process	ts produce gear by milling.
CO2.MAKE Fibre-reinforced CO3.PERFORM cylindrical/s	ng TIG/ MIG/ Resistance/Gas weld Composites by hand lay-up process surface grinding operation and CAI of indexing movements required and l milling machine t report	ss or spray lay-up techniques LCULATE its machining time
_	idelines for Laboratory Conduct	ion
	ll complete the following activity a	
Practical (Select any One Practical from Practical # 1 & 2; Select any Five Practical from Practical		
 from pattern making, sand mot Visit to any foundry/ permane and make a report on it. A compulsory visit to any Wire/Tube drawing unit and p A demonstration of any one w drawing to be prepared by an weld joint design such as ed voltage etc. Manufacturing of Fibre-reir techniques. Demonstration on any one p injection moulding process/ by Demonstration on cylindrica roughness produced and estim Demonstration on indexing m 	s stages of casting through demon ould preparation and melting and po- ent mould casting industry to dem one metal forming industry out orepare a report on it. welding technique out of TIG/ MI4 individual institute with details of lge preparation, type and size of nforced Composites by hand la lastic component like bottle, bottl y additive manufacturing process. I grinding/surface grinding oper	ouring of metal. onstrate various stages of casting of: Rolling mill, Forging plant G/Resistance/Gas welding. A job welding process parameters with electrode used, welding current ay-up process or spray lay-up le caps, machine handles etc. by rations, measurement of surface ank and index plate movement by
Instructions for Laboratory Conduction		
	s regarding Laboratory Conduction	
 Industrial Visits to be conduct Demonstration of Welding m 	ted by the Teaching Faculty (subject machines, Surface/Cylindrical Grin ing to be taught by a subject Teac l	ect Teacher). Iding, Milling machine, Indexing

202052 - Project Based Learning - II			
Teaching Scheme	Credits	Examination Scheme	
Practical : 04 Hr./Week	02	Term Work : 50 Marks	
	Practical : 02		

Preamble

Currently, engineering education is undergoing significant structural changes worldwide. The rapidly evolving technological landscape forces educators to constantly reassess the content of engineering curricula in the context of emerging fields and with a multidisciplinary focus. In this process, it is necessary to devise, implement and evaluate innovative pedagogical approaches for the incorporation of these novel subjects into the educational programs without compromising the cultivation of the traditional skills. In this context, the educational community is showing rapidly rising interest in project-based learning approaches.

The mainstream engineering education follows traditional classroom teaching, in which the major focus is mainly on the lecture and the student has very little (if any) choice on the learning process. However rapid development in engineering and technology requires adopting a teaching approach that would assist students not only in developing a core set of industry relevant skills, but also enable them to adapt to changes in their professional career.

Course Objectives

- 1. To emphasize project based learning activities that are long-term, interdisciplinary and studentcentric.
- 2. To inculcate independent and group learning by solving real world problems with the help of available resources.
- 3. To be able to develop applications based on the fundamentals of mechanical engineering by possibly applying previously acquired knowledge.
- 4. To get practical experience in all steps in the life cycle of the development of mechanical systems: specification, design, implementation, and testing.
- 5. To be able to select and utilize appropriate concepts of mechanical engineering to design and analyze selected mechanical system.

Course Outcomes

On completion of the course, learner will be able to

- CO1.IDENTIFY the real-world problem (possibly of interdisciplinary nature) through a rigorous literature survey and formulate / set relevant aims and objectives.
- CO2.ANALYZE the results and arrive at valid conclusions.
- CO3.PROPOSE a suitable solution based on the fundamentals of mechanical engineering by possibly integration of previously acquired knowledge.
- CO4.CONTRIBUTE to society through proposed solutions by strictly following professional ethics and safety measures.

CO5.USE of technology in proposed work and demonstrate learning in oral and written form.

CO6.DEVELOP ability to work as an individual and as a team member.

Group Structure

Working in supervisor/mentor –monitored groups. The students plan, manage and complete a task/project/activity which addresses the stated problem.

- 1. Create groups of 5 (five) to 6 (six) students in each class
- 2. A supervisor/mentor teacher is assigned to 3-4 groups or one batch

Project Selection

The project can be selected by undertaking a survey of journal papers, patents or field visit (A problem can be theoretical, practical, social, technical, symbolic, cultural and/or scientific). The problem shall consist of following facets: feasibility of arriving at a solution, analyzing the problem, design and development of the system (hardware or virtual).

There are no commonly shared criteria/ guidelines for what constitutes an acceptable project.

Projects vary greatly in the depth of the questions explored, the clarity of the learning goals, the content and structure of the activity undertaken.

Solution to problem-based projects through *"learning by doing"* is recommended. The model begins with the identifying of a problem, often growing out of a question or "wondering". This formulated problem then stands as the starting point for learning. A problem can be theoretical, practical, social, technical, symbolic, cultural and/or scientific and grows out of students" wandering within different disciplines and professional environments. As stated in the preamble as the world has adapted and propagated multidisciplinary approach, hence the proposed project activity preferably should not be restricted to only mechanical domain specific projects rather should be Interdisciplinary in nature. However the chosen problem should be integration of other streams of engineering with Mechanical engineering.

Although in a genuine case 100% software/ virtual project topic may be allowed.

Ethical Practices, teamwork and project management:

Use Indian standards or any relevant standards for project manufacturing, respect the time of others, attend the reviews, poster presentation and model exhibitions, strictly follow the deadline of project completion, comply with all legislation requirements that govern workplace health and safety practices.

Effective Documentation

In order to make our engineering graduates capable of preparing effective documentation, it is required for the students to learn the effective writing skills. The PBL final report is expected to consist of the Literature Survey, Problem Statement, Aim and Objectives, System Block Diagram, System Implementation Details, Discussion and Analysis of Results, Conclusion, System Limitations and Future Scope. Many freely available software tools (for instance Mendley (Elsevier), Grammarly) are expected to be used during the preparation of PBL synopsis and final report. It is expected that the PBL guides/mentors shall teach students about utilizing valid sources of information (such as reference papers, books, magazines, etc) related to their PBL topic.

Evaluation & Continuous Assessment

The institution/head shall be committed to ensuring the effective and rigorous implementation of the idea of project based learning. Progress of PBL shall be monitored regularly on a weekly basis. Weekly review of the work shall be necessary. During the process of monitoring and continuous assessment and evaluation the individual and team performance is to be measured. PBL is monitored and continuous assessment is done by supervisor /mentor and authorities. Students must maintain an institutional culture of authentic collaboration, self-motivation, peer-learning and personal responsibility. The institution/department should support students in this regard through guidance/orientation programs and the provision of appropriate resources and services. Supervisor/mentor and Students must actively participate in assessment and evaluation processes.

The effectiveness of the concept PBL lies in rigorous and continuous assessment and evaluation of the student performance. It is recommended that all activities are required to be recorded regularly. A regular assessment of PBL work is required to be maintained at the department in PBL log book by students. It is expected that the PBL log book must include following:

- 1. Information of students and guide
- 2. Weekly monitoring by the PBL guide,
- 3. Assessment sheet for PBL work review by PBL guide and PBL Evaluation Committee (PEC).

The PEC structure shall consist of Head of the department, 1/2 senior faculties of the department and one industry expert (optional). Continuous Assessment Sheet (CAS) is to be maintained by the department.

Recommended parameters for assessment, evaluation and weightage

- 1. Idea Inception (kind of survey). (10%)
- 2. Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents). (15%)

- 3. Attended reviews, poster presentation and model exhibition. (10%)
- 4. Demonstration (Poster Presentation, Model Exhibition etc). (10%).
- 5. Awareness /Consideration of Environment/ Social /Ethics/ Safety measures/Legal aspects. (5%)
- 6. Outcome (physical model/prototype/ virtual model/ product development/ assembly & disassembly and analysis of standard mechanism or system, design and development of small applications using Arduino, design of control systems, development of various systems/ subsystems of BAJA/SUPRA/Robots/GoKart/ Sunrisers/Hackathon/ application development and similar activities/ System performance and analysis) (40%)
- 7. Participation in various competitions/ publication/ copyright/ patent) (10%)

Learning Resources

Reference Books / Research Articles

- 1. John Larmer, John R. Mergendoller, and Suzie Boss, "Setting the Standard for Project Based Learning"
- 2. John Larmer and Suzie Boss, "Project Based Teaching: How to Create Rigorous and Engaging Learning Experiences"
- 3. Erin M. Murphy and Ross Cooper, "Hacking Project Based Learning: 10 Easy Steps to PBL and Inquiry"

Web resources

- 1. https://www.edutopia.org/project-based-learning
- 2. www.howstuffworks.com
- 3. https://www.pblworks.org/
- 4. www.wikipedia.org

202053 - Audit Course - IV		
Teaching Scheme	Credits	Examination Scheme
-	-	-

GUIDELINES FOR CONDUCTION OF AUDIT COURSE

Faculty mentor shall be allotted for individual courses and he/she shall monitor the progress for successful accomplishment of the course. Such monitoring is necessary for ensuring that the concept of self learning is being pursued by the students 'in true letter and spirit'.

- If any course through Swayam/ NPTEL/ virtual platform is selected the minimum duration shall be of 8 weeks.
- However if any of the course duration is less than the desired (8 weeks) the mentor shall ensure that other activities in form of assignments, quizzes, group discussion etc. (allied with the course) for the balance duration should be undertaken.

In addition to credits courses, it is mandatory that there should be an audit course (non-credit course) from second year of Engineering. The student will be awarded grade as AP on successful completion of the audit course. The student may opt for any one of the audit courses in each semester. Such audit courses can help the student to get awareness of different issues which make an impact on human lives and enhance their skill sets to improve their employability. List of audit courses offered in the semester is provided in the curriculum. Students can choose one of the audit courses from the list of courses mentioned. Evaluation of the audit course will be done at institute level.

The student registered for audit course shall be awarded the grade AP and shall be included such grade in the Semester grade report for that course, provided student has the minimum attendance as prescribed by the Savitribai Phule Pune University and satisfactory in-semester performance and secured a passing grade in that audit course. No grade points are associated with this 'AP' grade and performance in these courses is not considered in the calculation of the performance indices SGPA and CGPA. Evaluation of the audit course will be done at institute level itself.

Selecting an Audit Course

List of Courses to be opted (Any one) under Audit Course IV

- Language & Mind Emotional Intelligence
- Advanced Foreign Language (preferably German/ Japanese)
- Human Behaviour
- Speaking Effectively
- Business Ethics
- Technical writing/ Research writing

The titles indicated above are subject to change in time to come and such an alteration (if any) should be brought to the notice of the BoS.

Using NPTEL Platform: (preferable)

NPTEL is an initiative by MHRD to enhance learning effectiveness in the field of technical education by developing curriculum based video courses and web based e-courses. The details of NPTEL courses are available on its official website www.nptel.ac.in

- Students can select any one of the courses mentioned above and has to register for the corresponding online course available on the NPTEL platform as an Audit course.
- Once the course is completed the student can appear for the examination as per the guidelines on the NPTEL portal.
- After clearing the examination successfully; student will be awarded with a certificate.

Assessment of an Audit Course

- The assessment of the course will be done at the institute level. The institute has to maintain the record of the various audit courses opted by the students. The audit course opted by the students could be interdisciplinary.
- During the course students will be submitting the online assignments. A copy of the same can be submitted as a part of term work for the corresponding Audit course.
- . On the satisfactory submission of assignments, the institute can mark as "Present" and the student will be awarded the grade AP on the marksheet.